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A stability analysis for interfacial waves using a 
Zakharov equation 
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University of New South Wales, Kensington, Australia 

(Received 29 June 1988 and in revised form 8 September 1989) 

An amplitude equation for weak interactions of waves is derived to describe the time 
evolution of disturbances on an interface between fluids of differing densities, with 
rigid upper and lower boundaries. This equation is analogous to the Zakharov 
equation for water waves and is used to investigate the stability of a periodic wave. 
It is found that, for small wave steepnesses, the instabilities are due to resonant 
quartets with perturbation wavenumbers of the order of, or less than, that of the 
main wave. A second instability is found for large perturbation wavenumbers and 
moderately high wave steepnesses. This is restricted to the case when the Boussinesq 
parameter is small. It is shown that this is a Kelvin-Helmholtz instability caused by 
a wave-induced jump in the fluid velocity across the interface. 

1. Introduction 
It has long been known that waves can exist on a fluid surface or interface. Water 

waves are the best known but large-amplitude internal waves are commonly 
observed on the oceanic pycnocline, or on an atmospheric inversion layer, and are 
often approximated by an interface separating fluids of constant, but different 
densities. 

Periodic interfacial waves have been modelled for finite amplitudes by Holyer 
(1979), Saffman & Yuen (1982), Pullin & Grimsham (1983a, b ) ,  amongst others. At 
small wave steepnesses, assuming that the effects of the Kelvin-Helmholtz instability 
discussed later are negligible a t  these steepnesses, the stability of such a wave on a 
surface or interface is dictated by the existence of resonant interactions. That is, a 
perturbation of the form of a pair of plane waves can interact with the main wave 
in such a way that energy exchange can take place. These resonances occur for 
infinitesimal wave steepnesses when the condition 

w(k,) + w ( k , )  = Nw(k,) with k, + k, = Nk, (1 .1)  

is satisfied, where w ( k )  is the frequency of a plane wave with a two-dimensional 
wavenumber k and is obtained from the linear dispersion relation. The main wave 
has a wavenumber k, = (k , ,O)  while k,  and k,  denote the wavenumbers of the 
perturbation. N is a positive integer. This resonance condition is described in further 
details in the excellent review article by Phillips (1981). 

For interfacial waves this angular frequency is given by 

(Pz-PJglkI w(k)  = 
{p ,  coth Ikld, +p2 coth Ikld, 

t Now at School of Engineering, University of Exeter, North Park Road, Exeter EX4 4QF, UK. 
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FIGURE 1. Solution of equation (1.1) for p = (p,p) showing resonance curves. Quartet 

resonance, N = 2, (continuous line) ; quintet resonance, N = 3, (dashed). 
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where p,(p,) is the density of the upper (lower) fluid, d,(d,) is the depth of the upper 
(lower) fluid and g is the gravitational acceleration. For the case of surface waves, 
where p1 = 0, this reduces to 

o ( k )  = {glkl tanh Ikld,$. 

The case when N = 1,  the triad resonance, does not exist for surface or interfacial 
waves in the absence of shear. This was shown by Phillips (1960) for the case of 
surface waves, while Pullin & Grimshaw (1985) extended this argument to include 
interfacial waves. In  contrast, Craik (1968) and a later paper by Pullin & Grimshaw 
(1986), showed the existence of triad resonances if a sufficiently strong current shear 
was introduced. 

The case when N = 2, the quartet resonance, can be found by setting k,  = k,  + p  
and k,  = k,-p,  where p = ( p , q )  is termed the perturbation wavenumber. The 
solution curve for (1.1) of p against q can be seen in figure 1 and takes the form of 
a ‘figure of 8’. This was first found by Phillips (1960) for the case of surface waves. 

The quintet resonant curve, N = 3, can also be found by setting k, = ko+p and 
k, = 2ko-p and is plotted in figure 1.  This curve is symmetric about p = 0.5. 

Equation (1.1) gives only the perturbation wavenumbers where resonances can 
occur for infinitesimal wave steepnesses and says nothing about the growth rates. 
Three different techniques have been used to model the evolution of this wave system 
and hence calculate the growth rates, these being a numerical method based on a 
spectral expansion, the use of the Zakharov equation for the case of surface waves, 
or the use of a nonlinear Schrodinger equation. The nonlinear Schrodinger equation 
describing three-dimensional, finite-depth surface waves was derived by Davey & 
Stewartson (1974) using a multiple scale technique. It was assumed that both the 
wave steepness and the spectral bandwidth of the solution are small and hence a 
coupled pair of equations describing the amplitude and the mean flow was derived, 
the Davey-Stewartson equations. Upon assuming that the modulation of the 
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amplitude and mean flow is of the form of a plane periodic wave a nonlinear 
Schrodinger equation was then obtained. A subsequent stability analysis was then 
done on a periodic wave which gave the growth rates for the quartet resonance, 
restricted to small perturbation wavenumbers. 

The Zakharov equation for surface waves was first derived by Zakharov (1968) for 
the infinite-depth case and later extended to  the finite-depth case, in Zakharov & 
Kharitonov (1970). The Zakharov equation is superior to the nonlinear Schrodinger 
equation in that the perturbation wavenumber is not assumed to be small and hence 
the resonant instability can be investigated for all perturbation wavenumbers. An 
extensive stability analysis was not given in these papers but was first done by 
Crawford et al. (1981) who found a restabilization of the quartet resonance for large 
wave steepnesses, in agreement with previous numerical work by Longuet-Higgins 
(1978a, 6 ) .  Stiassnie & Shemer (1984) extended the finite-depth Zakharov equation 
to fourth order, such that both quartet and quintet resonances could be investigated 
as quartet resonances are described by third-order effects and the quintet by fourth. 

In  the first of a series of papers Grimshaw & Pullin (1985) derived the nonlinear 
Schrodinger equation, coupled to a wave-induced mean-flow equation, for interfacial 
waves between fluids of finite depths and a given ratio of fluid densities. These 
equations are analogous to the Davey-Stewartson equations for surface waves. A 
stability analysis was then done which showed that for infinite depths the 
perturbation wavenumber for maximum growth rate was two-dimensional, i.e. 
parallel to the wavenumber of the main wave, and with a wavenumber close to zero. 
For finite depths this wavenumber of maximum growth rate was generally three- 
dimensional as the region of small-perturbation wavenumber restabilized. Yuen 
(1984) used a numerical technique, similar to that of McLean (1982a,b) for surface 
waves, to investigate the stability of interfacial waves in the presence of a current 
jump across the interface. Quartet and quintet resonances were found, along with a 
Kelvin-Helmholtz instability when the current jump was present. In  the second 
paper by Pullin & Grimshaw (1985) a numerical technique was also used to examine 
the stability of a finite-amplitude interfacial wave in the Boussinesq limit, with the 
lower fluid infinitely deep. For small wave steepnesses it was found that the 
instabilities were dominated by resonant quartets, with higher-order effects not as 
important. For larger wave steepnesses these were swamped by a Kelvin-Helmholtz 
instability, No restabilization of the quartet resonance was found in the wave 
steepnesses investigated, that is below the Kelvin-Helmholtz threshold. As with 
surface waves, McLean (1982a,b), it was found that the growth rates of these 
resonant instabilities behaved as the wave steepness raised to the power of N ,  where 
N is defined as in ( 1 . 1 ) .  In a third paper, Pullin & Grimshaw (1986), the effects of a 
basic current shear were introduced. 

In  this paper an amplitude equation for interfacial waves, similar to the Zakharov 
equation for surface waves, is derived in $2. No assumption is made on the depths or 
fluid densities, unlike the above numerical methods. From this a nonlinear 
Schrodinger equation, coupled to a wave-induced mean-flow equation, is found in $3  
under the assumption that the solution is a periodic wave with a long wavelength 
modulation. Using this Zakharov equation a linear stability analysis is then carried 
out on a steady, periodic solution. I n  agreement with these numerical accounts it is 
found that for small wave steepnesses the instabilities are due to quartet resonances 
but for large wave steepnesses, and small values of the Boussinesq parameter, 
another instability is found which is shown to be a Kelvin-Helmholtz instability 
induced by the main wave. 

, Fl,.\I 214 
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2. Derivation of the Zakharov equation for the case of interfacial waves 
Consider a two-layer fluid with densities p1 and pz, such that p1 < p2, where the 

subscripts 1 and 2 refer to the fluid properties of the upper and lower fluids 
respectively. The fluid is bounded by horizontal planes a t  z = d, and z = -d, and the 
interface is a t  z = ~ ( x ,  t ) ,  where x = (x, y). Gravity acts in the negative z-direction. 
The flow is considered to be irrotational and described by the velocity potentials 
q5,(x, z ,  t ) ,  (j = 1,2),  where the flow field is given by 0, = (u,, w,, wj) = V$j. 

The two kinematic boundary conditions at  the interface are given by 

qt+V,$,-V,7 = q5j,z on z = 7 (j = (2.1) 

where V, = (a/&, a/ay) and $ f , z  = (a/&) $, etc. The dynamic condition is given by 
the restriction that the pressure is continuous across the interface, giving 

~( -1 ) ’P j {$ , , t+ f r (V$1)2+S7}  = 0 on 2 = 7,  (2.2) 
1 

from Bernoulli’s theorem. 
As the fluids are assumed to  be incompressible then 

v2q5j = 0 (2.3) 

q5,,z = 0 a t  z = d,, - d 2 .  (2.4) 

and the conditions at the boundaries are 

Following the method outlined by Yuen & Lake (1982) for the derivation of the 
Zakharov equation for surface waves, we define the velocity potential a t  the interface 
to be q5,”(x,t), viz. 

This gives the kinematic boundary conditions a t  the interface to be 

$,”(x, t )  = $,(x, 7(x, t ) ,  t ) .  

7t+V,q5,”.VV,7-q5j,z(l+(Vx7)2) = O  (j = 192) (2.5) 

and the dynamic condition becomes 

~ ( - - l , j P l { $ j s , t + ~ ( V x $ , ” ) 2 - $ ~ ~ , t ( l + ( V x r ) 2 ) + $ 7 ) )  = 0, (2.6) 
i 

with q5,*z evaluated a t  z = 7. 
An approximation to  the Fourier transform of these boundary conditions can be 

found under the assumption that the disturbance a t  the interface is small, and hence 
can be truncated to third order in wave steepness. The major difficulty is finding the 
Fourier transform of $,,z(x, 7, t ) .  

Define the Fourier transform of the velocity potential as 

where F{ } denotes the Fourier transform operation. Upon setting 
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which satisfies (2.3) and (2.4), and expanding to second order in q(x,t) one obtains 

6,(k) Ikls,(k) ij(k,) eickfkl)xdk dk, 

i6j(k)  cj(k) k2rj(k,) i(k,) ei(k+kl+k*)xdkdkl dk, 

+..., (2.9) 
where c,(k) = cosh (lkfd,), s,(k) = sinh (IkJd,) and $(k) is the Fourier transform of 
7(x,t). The time dependence has been dropped in the notation but is still implied. 
The Fourier transform of the above equation can be taken, from which 6j(k, t )  can 
be found to third order using an iterative method, and hence the Fourier transform 
of & ( x , ~ ,  t) from (2.8). The Fourier transform of the kinematic boundary condition 
is then found to be 

i,(W - (-  1)j Ikltn,(k) &k) 

x 6(k - k, - k, - k3) dk, dk, dk3 

+... = 0 (j = 1,2),  (2.10) 

where 

x 6(k- k, - k, - k3) dk, dk, dk, 

+... , 
These expressions can further be reduced with the substitutions 

(2.12) 

and 
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where p = pl+pz  and we let a = ( p 2 - p l ) / p .  The term a is called the Boussinesq 
parameter. For surface waves it has a value of unity but if the densities of the fluids 
are nearly equal, the Boussinesq limit, it is approximately zero. By subtracting (2.10) 
with j = 1, from itself with j = 2, then Y(k) can be found using an iterative 
technique, as it is a secnnd-order quantity. This gives $(k), to  third order, to be 

lk]Y(k) = - s* &(k) Y2(k k,, k,) $(k,) &(k - k, - k,) dk, dk, 
2x -m 

+Lr &(k,) @,(k, k,, k,, k,) $(k,) $(k3) S(k-k,-k,-k,) 
(2nY -m -a, -m 

x dk, dk, dk, 

t... . (2.13) 

The terms Yj are not written here owing to their complexity. The ipterfacial 
boundary conditions can then be reduced to a system in terms of $ and q!P alone: 

$,(W - Iklhfk) 9%) 

+ 4 /Im &(k,) ( 2w(k) w(kl))i V(k, - k,, k,) $(k,) 6(k - k, - k,) dk, dk, dk, 
agw(k2) 

k,, k,, k3)+f(l-a2) Y(k, k,, k,,k,)) 

x {(k,) ij(k3) S(k-k, - k,- k,) dk, dk, dk3+.  .. = 0 (2.14) 

and 

V(k,, k,, k )  &(k,) S(k- k, - k,) dk, dk, 

'{W(k,, k,,k,, -k)+i(1-a2) 

x Y(-k,,k,, k , k 3 ) } ~ ( k , ) $ ( k , ) S ( k - k l - k , - k 3 ) d k l d k , d k 3  
+... = 0, (2.15) 

where V(k, k,, k,), W(k, k,, k,, k,) and Y(k, k,, k,, k,) are defined in Appendix A. The 
subsequent analysis parallels closely that of the derivation for surface waves. 
Defining 

then I k l A ( k )  ' (b(k, t )  +b*( - k, t ) )  fi(k) = (m) 

(2.16) 

etc. as $(k) is a Fourier transform of a real function and hence $*( - k) = $(k). The 
asterisk superscript implies the complex conjugate, with the functions h(k) and o(k) 
given by 

. o(k) = (ag(klh(k))f, P h(k) = 
p,/tn,(k) +p,/tn,(k)' 

(2.17) 

the latter being the linear dispersion relation for travelling waves along the interface. 
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Combining (2.14), (2.15) and (2.16) the interfacial boundary conditions reduce to the 
single equation 

m 

b,(k) + iw(k) b(k)  + i 1 @(k, k,, k,) S(k-k l -k , )  b(k,) b(k,) dk, dk, 

J - m  J - m  J - m  

b ( k l )  b (k2)  b ( k 3 )  dkl d k Z  dk3 

c o m c o  +il-ml-ml-m [W(2)(k,kl,k~~k3)+$(1-a2)Y(2)(k,kl,k2~k3)l6(k+k1-k,-k3) 

x b*(kl) b(k,) b(k,) dk, dk, dk, 

+ i S_a, S_ym S_ym [WV, k,, k,, k3)  +t(l --a’) y ~ ,  k,, k,, k3)l ~ + k 1  +k2 -k3) 

+ i S_, S_, I-, [ w ( ~ ( k ,  k,, k,, k3)  +a( l -a~)  y‘4)(k, k17 k,, k3)1 ~ + k 1  +kz+k3) 

x b*(k,) b*(k,) b*(k3) dk, dk,dk3 
+... = 0, (2.18) 

where the coefficients d j ) ,  y(,) and d2) are defined in Appendix A. The solution to the 
linearized version of (2.18) is the simple periodic wave b(k) = b, exp ( i w ( k )  t ) ,  b, being 
a contant, whereas the integral terms give the second- and third-order nonlinear 
corrections. 

As triad resonances do not exist the evolution of the wave a t  small steepnesses is 
governed by the quartet resonance. The evolution timescale is then of the order of 
the square of the reciprocal of the wave steepnesses. This permits us to set 

b(k, t )  = [&(k, 7) + e2B’(k, t ) ]  e-iw(k)t, (2.19) 

where 7 = s’t and e is a measure of the nonlinearity. The linear component B varies 
on the slow timescale 7. Upon substitution of (2.19) into (2.18), B’(k, t )  can be found 
from the second-order equations by direct integration with respect to time. This term 
contains the nonlinear corrections such as the wave-induced mean flow and the first 
harmonic. After the substitution of B back into (2.18) one obtains 

x b*(k,) b*(k,) b(k,) dk, dk, dk, 
m m m  

05 m rn =Ipm Jpm q ( k , k 1 , k 2 ,  k 3 ) S f k - k 1 - k 2 - k 3 ) B ( k l ) B ( k 2 ) B ( k 3 )  

e i ( o ( k ) - w ( k l ) ~ w ( k z ) - w ( k ~ ) )  t dk, dk, dk3 

Jya q(k, k l ,  k27 k 3 )  S ( k + k 1 - k 2 - k 3 ) B * ( k 1 ) B ( k 2 ) B ( k 3 )  

e i (w(k )+w(k l ) -w(kz ) -w( t , ) )  t dk, dk, dk, 

+ 1-L q(k, k l ,  kZ, k 3 )  + kl + k2 - k 3 )  B*(kl)  B * ( k 2 )  B(k3)  

e i (w(k ) fw(k l )+w(k , ) -w(ks ) ) t  dk dk dk 
1 2 3  
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The Zakharov equation is found by excluding the terms with a fast time variation, 
as these would be smaller upon integrating with time than the terms with a slow time 
variation. This leaves only the second nonlinear term of (2.20) and only near the 
region of the quartet resonance given by (1.1).  Away from this region all the 
nonlinear terms are of equal importance as is discussed in Appendix C. 

The Zakharov equation is then 

*t(k) = Sm Sm T(k,  k, ,  k, ,  k3)  ei (w(k) fw(ki ) -w(kz) -w(ka)) t  

-m -m 

x S(k+kl-k2-k3)B*(k,)B(k,)B(k3)  dkldk2dk3 (2.21) 

where T(k,  k , ,  k, ,  k3)  ( = 5)  is given in Appendix A in terms of a(,), w(') and y('). The 
distinction between the various timescales has been dropped as there is now no 
ambiguity. This has the same form as the Zakharov equation for water waves, 
the only difference being the definition of w(k) and the interaction coefficient 
T(k,  k, ,  k,, k3). 

The Zakharov interaction coefficient is of the form 

W ,  k,,  k, ,  k3)  = 4 k ,  k , ,  k,, k3)  + w(')(k, k , ,  k, ,  k3)  +!(I -a2) y(,)(k,  k, ,  k,, k3) ,  
(2.22) 

where u(k,  k, ,  k,, k3)  is composed of terms formed by the product of the second-order 
interaction coefficients, and where y(,)(k,  k, ,  k,, k,)  is strictly an interfacial term 
caused by the nonlinear interactions between the upper and lower fluid. It can easily 
be shown that the interaction coefficients, which are listed in Appendix A, reduce to 
those of Stiassnie & Shemer (1984) in the limit that  the upper fluid density 
approaches zero. Also, in the case when both fluids are deep, d,+co, these 
expressions reduce to the form 

T(k,  k , ,  k, ,  k,)  = a2a(k, k, ,  k, ,  k 3 ) + w (') ( k ,  k1, k, ,  k3) +a(l -m2) y(,'(k, k, ,  k, ,  k3) .  
(2.23) 

As the Boussinesq parameter a is increased the term ti(k, k, ,  k, ,  k3)  becomes more 
important at the expense of the term y( , ) (k ,  k, ,  k,, k J .  For the Boussinesq limit the 
term a(k,  k, ,  k,, k3)  does not contribute while, as stated before, in the surface wave 
limit the term y(,)(k,  k, ,  k, ,  k3)  has no effect. 

3. Derivation of the nonlinear Schrodinger equation 
The Zakharov equation can be approximated by a nonlinear Schrodinger equation, 

coupled with a wave-induced mean-flow equation, under the assumption that the 
solution is a wavetrain with a long-wavelength modulation. Following Zakharov 
(1968), Stiassnie & Shemer (1984) we define kj  = k,+p,, where p,  = (p j ,q , )  and 

A @ ,  t )  = B(k,  t )  e-i(w(k)-w(ko))t 
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which, upon substitution into (2.21) gives 

J-00 J--03 J-00 

XA *@i)A@z)A@3) &@ +Pi -Pz-P3) dPi dP2 dP3- (3.1) 

The simplification which leads t o  the nonlinear Schrodinger equation is the 
assumption that the solution to the Zakharov equation is a wavetrain with a slow 
spatial variation. This implies that the Fourier transform of this wavetrain is band 
limited and that this band width is assumed to behave as the wave steepness. That 
is, p,/ko = O(koa). Under this assumption 

w ( k )  - w(ko) = c ++2 + g;p2+ ~ ( ( k ,  a)3), 
g'p 2k0 

where cg is the group velocity of the carrier wave and c; is the modulus of its 
derivative with respect to k. From (2.16) it can be shown that the surface height is 
given by the expression 

to leading order in spectral width. The complex wave amplitude is then 

where F1{ } defines the inverse Fourier transform operation. Taking the inverse 
Fourier transform of (3.1) one obtains 

w o  +P, kO+Pl, ko +P2, ko +P3) 

x A*(k,)A(k2)A(k3) ei@z+P2-p1).x&@ +pl -p2 -p3) dp dp, dp, dp,. (3.3) 

As this is to be truncated to third order, then only the component of A@,)  evaluated 
a t  p, = 0 is to be kept and hence only the leading term of the Zakharov interaction 
coefficient is necessary, viz. 

T(kO+p, k O + p l ,  k O + p 2 ,  kO+p3) pO(kO)+pLl(k0,P3-P1)+0@,/k0), 

where p1 + 0 as q, -ql + 0. The dependence of p, on p3 and p1 is in terms of the 
expression k,. @3-pl)/ko[p3-p,l alone. That is, the value of pl is dependent on the 
angle between the difference of the perturbation wavenumbers, and the wavenumber 
of the main wave. This gives 

where 
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The above integral expression is equivalent to the differential equation 

(3.46) 
a 2  

aY 
LQ = M - I U ~ ~ ,  

where 

and xl, x z ,  x3 and w p  are defined in Appendix B. 
The equations (3.4) were first derived by Grimshaw & Pullin (1985) where i t  was 

shown that Q represented the part of the wave-induced mean flow that responds to  
transverse modulations. These also reduce to the Davey-Stewartson equations when 
the upper density is zero. With the substitution of 

6 = e(x-cc,t) and 7 = e2t ,  

that is, in a frame moving with the group velocity, one obtains 

C 
ia,+Ic'n + L a y y  = 2 n 2 a ~ ( p o ( k o ) ~ a ~ 2 + Q ) .  

55 2k0 ko 4ko) 

If it is assumed that both a and Q have solutions with spatial dependence in terms 
of 6, = p c  + qy, that is are modulated in a single direction specified by the direction 
of the wavenumber p ,  then (3.4) reduce to 

The coefficients ,uo(ko) and ,ul(ko,p) are given in Appendix B and are in agreement 
with the cubic term of the nonlinear Schrodinger equation that was derived by 
Grimshaw & Pullin (1985) after the change of scale such that Y , J ~  = 2nk0 a is made. The 
term yl is the dependent variable used in this paper. 

4. Linear stability analysis 
4.1. Calculation of the basic state 

A relatively simple solution to the Zakharov equation can be found by looking for a 
uniform, two-dimensional travelling wave. Set 

B(k, t )  = B, ( t )6 (k -ko) .  (4.1) 

Substitution into (2.21) then gives 

&,At) W - k o )  = w, ko, k,, k,)  l&(t)12&4 W - k k , ) .  

&,(t) = Bo lim .-iB: T(k, k,, k,, k,) t = B 0 e-i@p(k,) t , 

This has a solution for & ( t )  of the form 

(4.2) 
k-k, 

for a strictly two-dimensional wave. To leading order it can be shown that 
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with the use of (2.16). This is a periodic wave with the nonlinear correction to the 
phase velocity Bi ,uo(ko). This nonlinear correction, which is identical to that found 
by Grimshaw & Pullin (1985, equation (4.5)), takes the form of the standard Stokes 
correction together with a wave-induced 'drift speed', i.e. a mean-flow term. This 
also reduces to that given by Davey & Stewartson (1974) for the surface wave case. 

4.2. Linear stability analysis of a perturbation to the basic state 
In  the usual manner the stability of this solution is examined by adding a small 
perturbation, viz. 

B(k, t )  =B,( t )S(k-k,)+B+(t)  6(k+p-ko)  +B-(t)  G(k-p-k,), (4.3) 

where it is assumed that B+ + B,. This perturbation is of the form of a pair of plane 
waves with wavenumbers k,fp. By substituting this into (2.21), and linearizing in 
B + ,  - it was shown by Crawford et al. (1981) that the coupled equation 

(4.4) 

This can be solved with the substitution of the relation 

B,(t)  = B- e-i(@+poB:+s)t + 
where B,  and s are constants. This gives s to be 

s = (T+,+ - T-, -)& +{ - T+,- T-,+ Bt + [ -;SZ +Bi(T+, + + T-,--PJ]~)'. (4.7) 

By (4.6) the only possible situation where there could be a growth in the perturbation 
is when s becomes complex. For small wave steepnesses, this implies that  the value 
of SZ is small and hence instabilities are due to resonant quartets a t  or near the curve 
in p-space defined by SZ = 0, recovering (1.1).  This does not preclude the possibility 
of other forms of instabilities for finite wave steepnesses. 

The valuation of (4.7) was not straightforward, because the term 

T(k,  k, ,  k, ,  k,) = T(k,  +P, k,, k, +P, k,) 

is singular for all values ofp .  This singularity was found to be removable as both 
numerator and denominator are of the same order in the limit that k,  -+ k .  The local 
solution was found for these singular terms, that is, the limit 

lim W ,  +p + 6, k,, k ,  fp ,  k,) 

was found in terms of k,, p and, unfortunately, the direction of the vector 6. 
Although individually they were found to be dependent upon the direction as 6 
approached zero, it was found that 

6-0 

was directionally independent, where the wavenumber of the main wave was also 
perturbed by 6. That is, as long as the direction of 6 was kept the same for the 
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FIQURE 2. Comparison of present results (continuous line) with the numerical results of Pullin & 
Grimshaw (1985) ( + ) :  u/o(k,) 2)s. p/k,. (a) k,a = O.lx, k,d,  = lox, k,d ,  = CO, q / k ,  = 0;  (6) k,a = 
0.021t, 0.057~ (lower), k,d ,  = 0.27~, q /k ,  = 0.1. 

evaluation of all the terms then the growth rate did not depend on this direction. 
Physically, this 6 has the effect of a long-wavelength modulation to the system which 
would be the same for all the interaction coefficients. The value of s could then be 
evaluated for a given p .  This complication does not arise for the infinite-depth case 
as these singular terms decay algebraically with depth. 

As it is known that the regions of instability will be restricted to the region near 
the ‘figure of 8 ’  curve, a t  least for small wave steepnesses, then for a given q there 
will be four distinct zeros to the expression within the square root of (4.71, for p and 
q positive. These roots were found using the secant method. The two intervals of 
instability were subdivided, generally into twenty equispaced divisions, so that the 
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growth rates could be found for the various values of p within this region. This was 
repeated for a range of q that encompassed the ‘figure of 8 ’  curve. 

These results were compared with those of Pullin & Grimshaw (1985) for the 
Boussinesq limit and Stiassnie & Shemer (1984) for the surface wave case. The results 
were identical to the latter, as would be expected, thus checking the computer code. 
The difference between the author’s results and the numerical results of Pullin & 
Grimshaw (1985) were surprisingly small for all reasonable values of wave steepness. 
This can be seen in figure 2. It should be pointed out that for the case of surface waves 
the agreement is not as good between the Zakharov equation and the numerical 
results for the same wave steepness, see Stiassnie & Shemer (1984). 

5. Results 
For small wave steepnesses the quartet instabilities are restricted to the ‘figure of 

8 ’  curve given by (1.1).  Only the growth rates for p , q  positive were investigated 
owing to the inherent symmetries, i.e. the growth rates were invariant under 
reflection about p = 0 or q = 0. These growth rates (T, the imaginary part of s, were 
divided by the square of the wave steepness, a normalization suggested by (4.7). The 
perturbation wavenumbers were normalized with respect to the wavenumber of the 
main wave. For convenience the region on this curve where q is increasing with 
increasing p is termed the region of small p while the region of decreasing q with 
increasing p is termed the region of large p .  Three values of the Boussinesq parameter 
were investigated : 0, 0.8 and 1 .  

The growth rates for various values of the two depths, d,, d, are shown in figures 
3 4 .  For both depths infinite, figure 3, the perturbation wavenumber of the largest 
growth rate is always small and in the direction of the main wave, this point is 
represented by a dot in the figures. For the surface wave case, a = 1,  the region of 
large p is stable, in agreement with previous surface wave results, but becomes 
unstable as the Boussinesq parameter is decreased. It was found numerically that the 
width of the region of instability near p x (1.25,O) behaves as 

(k,aI2 (1  -a2),  

implying that the surface wave case is exceptional in that the region of large p does 
not exhibit instability a t  order (k,a)2.  McLean ( 1 9 8 2 ~ )  showed that this region 
actually possesses growth rates of order ( k ,  a)4 and so would not appear a t  this lower 
order. 

As the lower depth was decreased it was found that the growth rates for small 
perturbation wavenumbers decreased with eventual restabilization for all values of 
the Boussinesq parameter, in agreement with Grimshaw & Pullin (1985), Whitham 
(1967) etc., with the Boussinesq limit being more sensitive. This caused the 
perturbation wavenumber of greatest growth rate to generally become three- 
dimensional, i.e. oblique to the main wave. For the surface wave case the region of 
large p is now unstable and for very small lower layer depths, k,d, x 0.2n, i t  was 
found that the perturbation wavenumber of greatest growth rates was in fact two- 
dimensional but in the region of large p ,  in agreement with McLean (1982 b ) .  The effect 
of decreasing the upper depth with a = 0.8 was to again decrease the growth rates 
for small perturbation wavenumbers, but not nearly to the same extent as when the 
lower depth was decreased. For the Boussinesq limit, decreasing the lower depth 
initially increased the growth rates for the region of large p ,  to the point that the 
wavenumber of greatest growth rate became two-dimensional and in this region, e.g. 



198 A .  Dixon 

FIQURE 3 ( a , b ) .  For caption see facing page. 

figure 4(c) .  As the depth was further reduced, however, the growth rate in this region 
decreased so that the wavenumber of greatest instability was again three-dimensional 
and in the region of small p .  It can be shown, see Appendix A, that in the Boussinesq 
limit if the values of the two depths are interchanged the growth rates remain the 
same. Hence decreasing the upper depth will produce the same results as decreasing 
the lower depth. 

In  figure 5 the effect of decreasing both depths is shown. This is a region that the 
previous numerical studies for interfacial waves did not investigate. For a = 0.8 it is 
very similar to when the lower depth was decreased alone. For a = 0 the whole region 
of small p has nearly restabilized as predicted by the nonlinear Schrodinger equation, 
Grimshaw & Pullin (S985). The perturbation wavenumber of greatest growth rates 
is now two-dimensional in the region of large p .  

It was found that increasing the wave steepness increased the resonant bandwidth 
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FIGURE 3. Stability diagrams with superimposed growth rates (at q / k ,  = constant) - shaded 
regions are unstable, s* = c~A(k,)/w(k,) ( k , ~ ) ~ ;  0 ,  position of largest growth rate. k,a = 0.2, 
k , d ,  = k,d,  = CO. (a )  a = 1.0, ( b )  a = 0.8, (c) a = 0. 

but decreased the dimensions of the ‘figure of 8’ as was previously found for surface 
waves e.g. Crawford et al. (1981). For the infinite-depth surface wave case it was 
found that for wave steepnesses greater than 0.39 the resonant band left the point 
p = ( 0 , O )  and by about 0.5 there is complete restabilization, again in agreement with 
Crawford et al. (1981). Decreasing the depth in this wave steepness region had a 
destabilizing effect. The trend is similar for a = 0.8 with restabilization of the region 
of small p at k,a = 0.58 for both depths infinite. Again, decreasing the lower depth 
produced a destabilizing effect while the effect of decreasing the upper depth was 
negligible. The region of large p did not restabilize for reasonable values of k,a, 
however. For a = 0, the region of small p never completely restabilized but the 
growth rates reached a minimum at k ,  a x 0.79. Again, the region of large p did not 
restabilize. This is shown in figure 6. The numerical method of Pullin & Grimshaw 
(1985) could not investigate this region of wave steepness and Boussinesq parameter 
as i t  was swamped by the Kelvin-Helmholtz instability. 

It appears that  restabilization of quartet resonances is restricted to the infinite- 
depth surface wave case owing to the general instability a t  large p at other values of 
the Boussinesq parameter. This region of Boussinesq parameter was investigated to 
see if restabilization occurred for the case of air over water. This is shown in figure 7 
where the wave steepness of restabilization for the region p x (1.25,O) is plotted 
against the Boussinesq parameter, the region of small p being insensitive to these 
changes. It was found that restablization is possible for a > 0.97 for reasonable wave 
steepnesses, which includes the case of air over water, a x 0.9967. 

As the derivation of the Zakharov equation is based on a small-amplitude 
approximation, these last sets of results must be viewed with caution. It is 
encouraging to note that although, for the case of surface waves, restabilization took 
place a t  a value of the wave steepness far in excess of what would normally be 
considered valid it does predict the qualitative results. This wave steepness of 
restabilization is actually higher than the wave of greatest steepness, while for the 
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FIGURE 4 ( a , b ) .  For caption see facing page. 

Boussinesq limit the wave steepness of near restabilization is approximately 60 YO of 
that of the highest wave. 

6. Investigation of a wave-induced Kelvin-Helmholtz instability 
Another form of instability was found for the case of large perturbation 

wavenumbers. This was confined to when the Boussinesq parameter is small and for 
a moderately large wave steepness. This is due to  a Kelvin-Helmholtz instability and 
is caused by the jump in fluid velocity across the interface due to the main wave. This 
is probably related to a similar instability found by Pullin & Grimshaw (1985), who 
first suggested this interpretation. 
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FIGURE 4. Stability diagram with superposed growth rates, s* = uA(k,)/w(k,)  ( l ~ , a ) ~ .  k,a = 0.1, 
k,d, = 311, k,d, =in.  (a) a = 1.0, (6) a = 0.8, (c) a = 0. 

This instability was found to take the form of a band in the (p, q)-plane, as can be 
seen in figure 8. Note that these growth rates are much larger than for the quartet 
resonance. As the wave steepness was increased the band became smaller in width 
and approached the origin. The growth rates also decreased in magnitude. Increasing 
the Boussinesq parameter was found to have a stabilizing effect. The numerical 
results did not give this banded structure and it is shown in Appendix C to be not real 
but due to the limitations of the Zakharov equation for large perturbation 
wavenumbers. 

The above mentioned Kelvin-Helmholtz instability can be investigated with the 
use of a simple analytic model. As large wavenumber perturbations are being 
investigated on a basic wave of small steepness, the latter can be approximated by 
an interface that is locally flat and horizontal, and with a velocity field that is 
constant compared to the lengthscales of the perturbations. The dispersion relation 
for such a system in the Boussinesq limit is given by 

where U, and U, are the mean fluid velocities on either side of the interface and p is 
the wavenumber of the perturbation, see Drazin & Reid (1981). To obtain an 
approximation to U, the linearized equations of (2.1) and (2.2) can be used to obtain 

Y(X, t )  = 01 cos (ko*x - o(ko) t )  + O( (ko a)'), 

for the main wave. As U, = $r ,5  ( x ,O , t )  then from (6.1) the growth rates are found 
to be 

d ~ ) / w ( k o )  = IP'Y~(x, t )  - l~l /kO)~+ O((ko a)2)  (6.2) 

for bl /ko  > l/bi 7' cosZq5 = p J k 0  cos2 q5, 



202 A .  Dixon 

FIGURE 5. Stability diagram with superposed growth rates, s* = rrh(ko)/w(ko) (k0a)*. koa = 0.1, 
k o d ,  = k o d ,  =in. (a )  a = 0.8, ( b )  a = 0 .  

where q5 is the angle between the perturbation and the main wave. Instability is 
therefore greatest a t  the crests and troughs. 

These expressions agree well with the numerical results of Pullin & Grimshaw 
(1985) but not with the present results as there is no restabilization for large lpl. The 
banded structure is due to the exclusion of the rapidly varying terms of (2.20) to 
obtain the Zakharov equation, hence only part of the instability is described. This is 
discussed further in Appendix C where these non-resonant terms are included and 
(6.2) is rederived from (2.18). 

It should be noted that these growth rates are of order p v  + 1 for lpl % p ,  in 
conflict with (2.19) where it was assumed that the system evolves a t  a rate ( k , , ~ ) ~ .  In 
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FIGURE 6. Partial restabilization at  large wave steepnesses, s* = uh(ko)/o(ko)(koa)Z. koa = 0.85, 
kod, = kod, = CO, u = 0. 
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FIGURE 7. Wave steepness of restabilization for large p for various values of the Boussinesq 
parameter: k,a us. a. k,d, = kod, = CO, p x 1.25, q = 0. 

n 

reality one would expect the growth rates to be limited a t  these high wavenumbers 
by the effects of surface tension, viscosity and/or the finite thickness of the interface. 

For example if surface tension were to  be included then (6.2) would become 

where y is the coefficient for the interfacial surface tension. Note that for a given lpI 
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FIGURE 8. Large wavenumber Kelvin-Helmholtz instability : r / w ( k , )  us. (Polk,, q/k,). k , a  = 0.2, 
k , d ,  = k , d ,  = OC), u = 0. 

instability is greatest for perturbations parallel to the main wave. Instability is now 
restricted to the wavenumber band 

where r = yk;/p6J2(ko), 

so that high wavenumbers have restabilized with the addition of surface tension. 
This implies that for a region to be unstable then 

MX, t)I > ( 4 0 t / k O 3  

that is, the Kelvin-Helmholtz instability is restricted to regons of the main wave 
where the interface is of a vertical distance greater than ( 4 0 z / k 0  above or below the 
mean level. As an example consider the case of ether, with a density of 0.736 g/cc, 
on water. The Boussinesq parameter is 0.152 and for a wavelength of the main wave 
of 20 ern then r = 0.0041, giving (71 > 1.1 ern for instability. 

7. Conclusion 
Two forms of instabilities were found for interfacial waves from the Zakharov 

equation. The first is due to a quartet interaction, similar to that for the surface wave 
case, while the second is a Kelvin-Helmholtz instability and appears for large 
perturbation wavenumbers and small values of the Boussinesq parameter. This 
latter form of instability has large growth rates and is restricted to a band in the 
( p ,  q)-plane. This band structure, however, is due to the limitations of the Zakharov 
equation for large perturbation wavenumbers and is not real. 

For the resonant quartet instability, the dependence of growth rates on the 
Boussinesq parameter and the two depths was found to be complex. The general 
trend, however, was that as one of the depths was decreased the growth rate near 
the origin reduced and eventually restabilized. This caused the wavenumber of 
greatest instability to become three-dimensional except in certain cases when the 
dominant instability was then in the region of large p with q = 0. This was found for 
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both small-depth surface waves and for a limited range of depths in the Boussinesq 
limit. 

The restabilization of quartet resonances at large values of the wave steepness was 
restricted to the case of infinite-depth surface waves, as it was only for this case that 
the region of large p on the ‘figure of 8 ’  was stable. Higher-order resonances, not 
incuded in this perturbation approach, remain unstable a t  these wave steepnesses, 
however. For decreased values of the Boussinesq parameter this region destabilized 
but not sufficiently quickly for the case of air on water to be excluded from large 
wave steepness restabilization. Here again this region of large p was the region of 
greatest instability for quartet resonance for these wave steepnesses, for all values of 
the Boussinesq parameter small enough for the waves to be unstable. 
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with this research. I also wish to thank Professor E. 0. Tuck and gratefully 
acknowledge the support by the Australian Research Council for part of this 
research. 
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and where 

(ki(ki+k3))'(k(k,+k3))/lk,+k,l 
- (kl+ k3) * (k,IkItn,(k) tn,(ki+ k3) + klkiltnj(k1) tn5(ki+ k3))). 

Upon the assumption that both depths are approaching infinity, and hence 
tn,(k) x 1 ,  then the Zakharov interaction coefficient can be expressed as 

T ( k , k 1 , k 2 , k 3 )  = a2ti(k,k,,k,,k3)+~(2)(k,kl,k2,k3)+~(l-a2)~(2)(k,kl,k2,k3), 

where 

k *  (ki + k 3 ) / k  +k3l- (k ,  +k,)' (kilkl +klk,l)), 

with v(j'(k, k,, k,, k3) being defined as above in terms of the infinite depth V(k,  k,, k,, 
k3) and ti(k, k,, k,, k3) having the same definition as u(k,  k,, k,, k3)  in terms of the 
infinite-depth definition of dj). Similarly y(') and w(,) are defined as above in terms 
of the infinite-depth definitions of W(k, k,, k,, k3)  and Y(k ,  k,, k,, k3).  

A.2. Symmetries in the depths in the Boussinesq limit 
It can be shown that, in the Boussinesq limit, if the values of the two depths are 
interchanged the Zakharov interaction coefficient is unchanged and hence the 
resultant growth rates remain the same. 

As p1 = p, then by inspection h(k) and w(k) are symmetric in d j .  That is if d ,  and 
d ,  are interchanged these quantities are unaltered. It therefore follows that W(k, k,, 
k,, k3) and Y(k ,  k,, k,, k3) are symmetric as well, and hence y(2)(k, k,, k,, k3)  and 
?d2)(k, k,, k,, k3) are. Alternatively, if d ,  and d ,  are interchanged then V(k,  k,, k,) 
experiences a change in sign. This change of sign is propagated through to the d5)(k ,  
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k,, k,) terms but as the Zakharov coefficient is dependent upon only the product of 
two of these terms then it is unchanged, hence the Zakharov interaction coefficient 
is invariant under the interchanging of the depths in the Boussinesq limit. 

Appendix B. Coefficient of the cubic term for the nonlinear Schrodinger 
equation 
Under the assumption that tn,@) E &Idj and that w(ko+p) can be approximated by 
w(ko)+p-c, ,  then 

T(kO+p, kO+pl, kO+pZ, ‘O+p3) ~ L o ( k 0 ) + ~ l ( k 0 , ~ 3 - ~ 1 ) ,  

where 

and where 

The first term of po(ko) gives the usual Stokes correction to the phase velocity, once 
multiplied by B;, while the remaining terms represent the wave-induced ‘drift 
velocity’ and reduce to the expression given by Davey & Stewartson (1974) for the 
surface wave case. 

For the infinite depths these reduce to 

Appendix C 
C.  1 .  Large wavenumber Kelvin-Helmholtz instability 

As was shown in $6 the Zakharov equation was inadequate in describing the 
Kelvin-Helmholtz instability induced by a periodic wave. In this section we shall 
show that this limitation is due to the exclusion of the non-resonant terms (the terms 
which rapidly vary with time) of (2.20), as it was assumed that the resonant term 
would always be dominant. This term, which gives the Zakharov equation, is 
dominant only for perturbation wavenumbers near the region of resonance, that is 
near the ‘figure of 8’. Elsewhere these other terms are of equal importance. 
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For simplicity we shall confine the discussion to the case of infinite depths and to 
the Boussinesq limit. Here the second-order terms vanish and (2.20) can be obtained 
from (2.18) with no restriction on the timescale for B, i.e. set 

The terms q ( k ,  k,, k,, ki) are defined below for this particular case. 

periodic wave solution. Assuming the form 
First, let us investigate the contribution of the non-resonant terms to the basic 

and by substitution into (2.20) it is possible to solve for A,  under the assumption A j  
< A, ,  i =I= 1, and hence the nonlinear terms are in A ,  alone to leading order. 
Reverting to physical space gives 

7c2 

2ki 
1 - (k ,  a)2 - T ( -ko,  k,, k,, k,) 

As can be seen the interaction coefficient from the resonant term T, appears only in 
the nonlinear correction to the phase velocity. The non-resonant terms modify the 
shape of the wave, either by changing the amplitude of the fundamental or by 
generating a harmonic. 

To investigate how the non-resonant terms effect the stability of this basic wave 
set 

where B, is defined as in (4.1) and (4.2). Upon substitution into (2.20), and linearizing 
in B, one obtains 

(C 3) B(k,  t )  = B,(k, t )  +B(k,  t ) ,  
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where the approximation that 

is made, implying that w(k,) t < lkl/ko. This restriction is not severe as we shall see 
that once the period of time has elapsed such that this is no longer valid, neither is 
the assumption that B is small, owing to the exponential growth from the instability. 
Note that all the terms of (C 4 )  are o f  a similar size in this limit of large Ikl/k,. 

Iw(k Zk,) -w(k)l t < 1 

Taking the inverse Fourier transform gives 

( - k ) ) )  eik.x dk = 0,  cos2 8 7 (B(k) + e2iw(k)tB* 
Bi ki k2 (m (i(B,( k )  + 

-m lkl' 
and assuming the perturbation comprises of a pair of waves of wavenumber -kp 

B(k,  t )  = B+(t) 6(k -p )  +B-(t)  6(k+p), (C 6 )  
the set of equations 

2 k' a*,t = -B,cos2e(B*+eliw(p)tB* 4n21pli +) (C 7) 

is obtained by keeping 8 fixed, which is valid for lpJ /k ,  large enough. This describes 
the local behaviour of B, at a given phase angle of the main wave. Solving as before 
one obtains (6.2) to leading order where w(k,) is replaced by a,, i.e. taking into 
account the nonlinear correction to the phase velocity. 

If only the resonant term is used, i.e. the Zakharov equation, one obtains 

for a band of instability such that 

8 P 2  
3 kolpl 
- c - (k, a)2  c 8, 

in agreement with earlier results. 

growth rates for wave-induced Kelvin-Helmholtz instability. 
With the inclusion of the off-resonance terms we have successfully rederived the 
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